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3.7 Limit Theorems for Empirical Processes

Asymptotic properties of empirical processes.
Givenko-Cantelli LLN and Kolmogorov-Doob-Donsker-Dudley CLT

F : cumulative distn. ftn of a probability measure P
F, : cumulative distn. ftn corresponding to an indep. sample from P

[|Fn — Flloo — 0 a.s.,
Vn(Fu(t) — F(t)) M Gp, (Centred Gaussian process) ,t € R

By the continuous mapping theorem,

di
Vil Fy = Fllse 5 [|Gpllso

® The same is true for any other continuous functional on /5 (R).



3.7 Limit Theorems for Empirical Processes

e LLN

® CLT for the empirical process indexed by a class F of functions by
carefully defining convergence in law of processes with bounded paths.
(i.e. random elements defined on the space I (F) of all bdd ftns
H:F —R)

® /w(F) is a non-separable metric space, and in order to recover the
uniform tightness property associated to convergence in law, the
definition asks for the limiting process to have a tight Borel
probability law in this space.

® Skorokhod representation

e CLT for empirical processes(permanence properties and extension by
convexity)
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3.7.1 Some Measurability

® The definition of convergence in law in the nonseparable space I (F)
does require the notion of outer expectation as soon as F is infinite

Definition [ Outer probability |

Let (Q,%, P) be a prob. space, and let A C Q be a not necessarily
measurable set.

The outer probability P*(A) of A C Q is defined as

P*(A) = inf{P(C): AC C,C € T}.  (3.241)

P*(A) = P(A) if A is measurable.



3.7.1 Some Measurability

Definition [ Outer expectation |
With the notation Eg := [ gdP for g measurable, if f : Q — [—00, o] is
not measurable, we may also define its outer expectation or integral as

/ fdP = E*f = inf{Eg : g > f, g measurable, [—o0, co]—valued}, (3.242)

except that E*f is undefined if there exist a measurable function g > f
s.t. EgT = Eg~ = oo and no measurable function g > f s.t. Eg = —oo0.

Eg exists if at most one of Eg™ and Eg~ is infinite, and then
Eg = Egt — Eg.



3.7.1 Some Measurability

Set
Ca={C:ACC,CeXx}, Gr={g>f:g measurable, [—oo,c0]—valued}

and note that Q € C4 and oo € Gy, so outer probabilities always exist and
outer expectations exist or are undefined.



3.7.1 Some Measurability

The infimum in (3.241) and (3.242) are, respectively, attained at a P a.s.
unique set in C4 and a P a.s. unique function in G :

Proposition 3.7.1

(a) For every set A C Q, the infimum in the definition (3.241) of P*(A) is
attained at a measurable set A* € C4 which is P a.s. uniquely determined.
In particular, P*(A) = P(A*).

(b) For every function f : Q ~— R, there exists a P a.s. unique function
f*eGrst. f*<g P as. for every g € Gr . Then, if either of E*f or Ef*
is defined, both are equal, as is the case, for example, if f is bounded
above or below.

(c) For any set A€ Q, (Ia)* = Ia« a.s. and hence P*(A) = E*(/a).



3.7.1 Some Measurability

e A* . P-measurable cover of the set A
e f* - P-measurable cover of the function f

® |t will also be convenient to call a function F a P-measurable
envelope of f if F > f* P a.s. and likewise for sets.
Note that if P and @ are mutually absolutely continuous, the P—
and Q—measurable covers of f coincide and likewise for measurable
envelopes.



3.7.1 Some Measurability

Proposition 3.7.2
(a) For any two functions f, g : Q — (—o0, 00|, we have

(F+g)"<f*+g*as.and (f—g)* > " —g",

where the second inequality requires that both sides be defined.
(b) For f : Q+— R,t € R and € > 0,

P{f >t} = P{f" >t} and P*{f > t} < P{f* >t} < P*{f > t'¢}.

(c) If B is a vector space with a pseudo-norm || - ||, , then for any
functions f, g : Q +— B,

I +gll” < |IfI" + llgl[*a.s. and [[cf[[" = [c[[[f[|"a-s.



3.7.1 Some Measurability

The following one-sided Fubini-Tonelli theorem is an important tool in the
calculus of nonmeasurable functions and it will be used often:

Proposition 3.7.3 [ One-sided Fubini-Tonelli theorem]
Let (X x Y, AQ B, P x Q) be a product probability space. Let
f:XxYw—[0,00),and let f* be its measurable cover w.r.t.P x Q. Let

E; and Eé‘) denote, respectively, the outer expectations w.r.t. P and Q.
Then

E,”;Eé)f < E(f), EZ,E,*;f < E(f7).
If, moreover, Q is discrete and B is the collection of all the subsets of Y/,
then
EfEqf < E(f*) = EgEpf.



3.7.1 Some Measurability

We introduce a concept that will be useful when extending to the
nonmeasurable setting Skorokhod's theorem about a.s. convergent
representations of sequences of random variables that converge in
distribution.

Let ¢ : (X, A) — (X,.A) be measurable, let P be a probability measure on
A and let P o ¢! be the probability law of ¢. Then, if f: X — R is
arbitrary, we have f* o ¢ > f o ¢, where f* is the P o ¢~1-measurable
cover of f and hence f* o ¢ is P-measurable and therefore
f*o¢p>(fop)* Pas.



3.7.1 Some Measurability

Definition 3.7.5 | P-perfect | A measurable map ¢ : X — X is P-perfect
if f*o¢=(fog)* P a.s. for every bounded function f : X — R , where
(f o $)* is the P-measurable cover of f o ¢ and f* is the

P o ¢~'-measurable cover of f.

Then, if ¢ is perfect and f is bounded,
* _ * D _ * D _ B —1\~
Eﬁ(foqb) = /(fogb) dP_/f o¢dP_/f*d(Po¢ )'1)
= / fd(Po¢™t)=Ej,,.f, (3.243)

or, for indicators, P*{¢ € A} = (P o ¢p~1)*(A) for any A C X . It is this
property that will make perfectness useful.
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3.7.2 Uniform Laws of Large Numbers (G-C Theorems)

® Given X;,i €N, on (Q,%, Pr) :=(S,S, P)Y, the product of
countably many copies of (S, S, P) and a collection of real-valued
measurable functions F on S.

® We are now interested in obtaining conditions on F and P ensuring
that LLN holds uniformly in f € F, that is, so that

nI|_>n;O |Pn— P||F=0 as.,

where P, =37, d0x./n (1 <i<n,neN).
® Let F be the P-measurable cover of the function x — suprcr|f(x)].
We call this function the measurable cover of F.



3.7.2 Uniform Laws of Large Numbers (G-C Theorems)

Proposition 3.7.8 If PF < oo then the sequence {||P, — P||%}74
converges a.s. and in L! to a finite limit.

The limit in proposition3.7.8 may not be zero: if, for example, P gives
mass zero to all finite sets of R and F is the collection of indicators of all
finite sets in R, then ||P, — P||z = |[(1/n) Y i, ox,({X1, - . Xa})||F =1



3.7.2 Uniform Laws of Large Numbers (G-C Theorems)

Corollary 3.7.9 If PF < oo and {||P, — P||%-} converges in probability to
zero, then it converges a.s. to zero.

In other words, under integrability of the measurable cover of the class F,
the weak law of large numbers uniform in f € F implies the uniform
strong law.



3.7.2 Uniform Laws of Large Numbers (G-C Theorems)

The following definition is given by analogy with the classical
Glivenko-Cantelli theorem for the empirical distribution function in R,
which is just the law of large numbers for the empirical process over
F = {l(—oo,x] X e R}

Definition 3.7.10 [ P-Glivenko-Cantelli class | A class of functions F is a
P-Glivenko-Cantelli class if ||P, — P||’%> — 0 a.s., where P, is the empirical
process based on the coordinate projections X;,i =1,--- ,n,n € N, of the
product probability space (S,S, P)V.



3.7.2 Uniform Laws of Large Numbers (G-C Theorems)

Definition 3.7.11 A class of functions F is P-measurable, or P-empirically
measurable, or just measurable, if for each {a;,b} C R and n € N, the
quantity || >-7_; a;f(Xi) + bP||F is measurable for the completion of P".

For example, if F is countable, then it is P-measurable for every P.
If Fo C F is P-measurable and for each{a;, b} C R and n € N,

Pr*{HZa, +beH;7é|]Zaf ) + bPf||£,} =0,
i=1

then F is P-measurable;



3.7.2 Uniform Laws of Large Numbers (G-C Theorems)

In the measurable case, the Glivenko-Cantelli property for F can be
characterised by a condition on the metric entropies of F w.r.t the L,(Pp)
pseudo-metrics, for any 0 < p < oco. These metric entropies are random,
so the result does not constitute a complete solution to the problem, but
it does simplify it.

® Definition of the empirical LP pseudo-distances :

enp(f,8) = [If — &llir(py)
- p =00, en7oo(f7g) = maX1§;§n|f(X,-) — g(X,-)‘
-0 < p < o0, enp(f,8) =Dy IF(Xi) — g(Xi) [P/ (PAL) .

e Covering numbers and packing numbers of (T, d)
. N(T.d,e), D(T,d.e)

Given a class of functions F and a positive number M, we set
Fm = {HFSM :f e ]:},

where F is the P-measurable cover of F (determined only P a.s.).



3.7.2 Uniform Laws of Large Numbers (G-C Theorems)

Theorem 3.7.14 Let F be class of functions with an everywhere finite
measurable cover F and such that F, is P-measurable for all M < oo.
Assume also that F is L1(P) -bounded, that is, supsc7P|f| < oo . Then
the following are equivalent:

(a) F is a P-Glivenko-Cantelli class of functions.

b) PF < oo and ||P, — P||7 2% 0

(
(c) PF < o0, and for all M < co,e > 0 and p € (0, o0,

(logN*(Fm, enp,€))/n b (in L for any 0 < r < 0).

(d) PF < o0, and for all M < oo and € > 0 and for some p € (0, oc],
(logN*(Fm, enp,€))/n b (in L for any 0 < r < 00).

(e) PF < 0, and for all M < o0 and € >0 ,

2M
E(l/\(l/ﬁ)/o /10N (Fu, en2.7)dr) — 0



3.7.2 Uniform Laws of Large Numbers (G-C Theorems)

Corollary 3.7.15 Let F be an L'(P)-bounded, P-measurable class of
functions, and let F be its P-measurable cover. Then F is
P-Glivenko-Cantelli if and only if

(a) PF < >, and

(b) (1/n)logN*(F, en2,€) _Prob, (or in L1/2) .

For classes of sets C, recall the definition of AC(A) for finite sets A in
Section 3.6.1, A°(A) = Card{AN C: C €C} , and note that for

Alw) = {X1(w), -, Xp(w)}, if CN{Xy, -, Xp} =DN{Xy, -+, Xp},
then e, ,(C,D) = 0 for all 0 < p < oo and that e, ,(C, D) > n~/(PV1)
otherwise. Hence, N(C, e, p,€) < AC(Xq,---,X,) for all ¢ > 0, with
equality for 0 < e < n=1/(PV1),



3.7.2 Uniform Laws of Large Numbers (G-C Theorems)

This observation and Theorem 3.7.14 for p = co give the following result
for classes of sets:

Corollary 3.7.16 Let C be an L'(P)-bounded, P-measurable class of sets.
Then [|P, — P||; — 0 a.s. if and only if

1
lim =log(AS(X1, -+, Xp))* =0 in prob.( or in L™ for any r < o)

n—oo n



3.7.2 Uniform Laws of Large Numbers (G-C Theorems)

Combining Corollary3.7.15 with Theorem3.6.9 about the empirical metric
entropy properties of VC type classes of functions, we obtain the following
uniform law of large numbers.

Corollary 3.7.17 Let P be any probability measure on (S, S), and let F be
a P-measurable class of functions whose measurable cover F is
P-integrable. Assume that

(a) F is VC subgraph or, more generally, of VC type, or

(b) Fis VC hull.

Then F is P-Glivenko-Cantelli.



3.7.2 Uniform Laws of Large Numbers (G-C Theorems)

Remark 3.7.18 Since, as mentioned in the preceding proof,

[|Pn— Pll7 =||Pn— P||@F . it follows that the Glivenko-Cantelli property
is preserved by taking pointwise closures of convex hulls; that is, F is
P-Glivenko-Cantelli if and only if coF is.



3.7.2 Uniform Laws of Large Numbers (G-C Theorems)

For larger classes, one may use the random entropies in Corollary 3.7.15
and Theorem 3.7.14;

The following criterion for the Glivenko-Cantelli property based on L!(P)
bracketing is more user friendly when it applies:

Theorem 3.7.20 If F C L}(S, 8, P) and Njj(F, L'(P),€) < oo for all
€ >0, then ||P, — P||% — Oa.s.



3.7.2 Uniform Laws of Large Numbers (G-C Theorems)

It also implies LLN in separable Banach spaces. For a random variable X
in a Banach space B, the expectation EX is defined in the Bochner sense.

Corollary 3.7.21 (Mourier law of large numbers) Let B be a separable
Banach space, and let X, X; be i.i.d. B-valued random vectors such that
E||X]|] < oo . Then

1 n
— E X;i — EX a.s.
n

i=1
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