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3.7 Limit Theorems for Empirical Processes

• Asymptotic properties of empirical processes.

• Givenko-Cantelli LLN and Kolmogorov-Doob-Donsker-Dudley CLT

• F : cumulative distn. ftn of a probability measure P
Fn : cumulative distn. ftn corresponding to an indep. sample from P

||Fn − F ||∞ → 0 a.s.,
√
n(Fn(t)− F (t))

law in l∞−−−−−−→ GP , (Centred Gaussian process) , t ∈ R

• By the continuous mapping theorem,

√
n||FN − F ||∞

distn−−−→ ||GP ||∞

• The same is true for any other continuous functional on l∞(R).



3.7 Limit Theorems for Empirical Processes

• LLN

• CLT for the empirical process indexed by a class F of functions by
carefully defining convergence in law of processes with bounded paths.
(i.e. random elements defined on the space l∞(F) of all bdd ftns
H : F 7→ R)

• l∞(F) is a non-separable metric space, and in order to recover the
uniform tightness property associated to convergence in law, the
definition asks for the limiting process to have a tight Borel
probability law in this space.

• Skorokhod representation

• CLT for empirical processes(permanence properties and extension by
convexity)
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3.7.1 Some Measurability

• The definition of convergence in law in the nonseparable space l∞(F)
does require the notion of outer expectation as soon as F is infinite

Definition [ Outer probability ]
Let (Ω,Σ,P) be a prob. space, and let A ⊂ Ω be a not necessarily
measurable set.
The outer probability P∗(A) of A ⊆ Ω is defined as

P∗(A) = inf {P(C ) : A ⊆ C ,C ∈ Σ}. (3.241)

P∗(A) = P(A) if A is measurable.



3.7.1 Some Measurability

Definition [ Outer expectation ]
With the notation Eg :=

∫
gdP for g measurable, if f : Ω 7→ [−∞,∞] is

not measurable, we may also define its outer expectation or integral as∫ ∗
fdP = E ∗f = inf {Eg : g ≥ f , g measurable, [−∞,∞]−valued}, (3.242)

except that E ∗f is undefined if there exist a measurable function g ≥ f
s.t. Eg+ = Eg− =∞ and no measurable function g ≥ f s.t. Eg = −∞.

Eg exists if at most one of Eg+ and Eg− is infinite, and then
Eg = Eg+ − Eg−.



3.7.1 Some Measurability

Set

CA = {C : A ⊆ C ,C ∈ Σ}, Gf = {g ≥ f : g measurable, [−∞,∞]−valued}

and note that Ω ∈ CA and ∞ ∈ Gf , so outer probabilities always exist and
outer expectations exist or are undefined.



3.7.1 Some Measurability

The infimum in (3.241) and (3.242) are, respectively, attained at a P a.s.
unique set in CA and a P a.s. unique function in Gf :

Proposition 3.7.1
(a) For every set A ⊂ Ω, the infimum in the definition (3.241) of P∗(A) is
attained at a measurable set A∗ ∈ CA which is P a.s. uniquely determined.
In particular, P∗(A) = P(A∗).
(b) For every function f : Ω 7→ R̄, there exists a P a.s. unique function
f ∗ ∈ Gf s.t. f ∗ ≤ g P a.s. for every g ∈ Gf . Then, if either of E ∗f or Ef ∗

is defined, both are equal, as is the case, for example, if f is bounded
above or below.
(c) For any set A ∈ Ω, (IA)∗ = IA∗ a.s. and hence P∗(A) = E ∗(IA).



3.7.1 Some Measurability

• A∗ : P-measurable cover of the set A

• f ∗ : P-measurable cover of the function f

• It will also be convenient to call a function F a P-measurable
envelope of f if F ≥ f ∗ P a.s. and likewise for sets.
Note that if P and Q are mutually absolutely continuous, the P−
and Q−measurable covers of f coincide and likewise for measurable
envelopes.



3.7.1 Some Measurability

Proposition 3.7.2
(a) For any two functions f , g : Ω 7→ (−∞,∞], we have

(f + g)∗ ≤ f ∗ + g∗ a.s. and (f − g)∗ ≥ f ∗ − g∗,

where the second inequality requires that both sides be defined.
(b) For f : Ω 7→ R, t ∈ R and ε > 0,

P∗{f > t} = P{f ∗ > t} and P∗{f ≥ t} ≤ P{f ∗ ≥ t} ≤ P∗{f ≥ t`ε}.

(c) If B is a vector space with a pseudo-norm || · ||, , then for any
functions f , g : Ω 7→ B,

||f + g ||∗ ≤ ||f ||∗ + ||g ||∗a.s. and ||cf ||∗ = |c |||f ||∗a.s.



3.7.1 Some Measurability

The following one-sided Fubini-Tonelli theorem is an important tool in the
calculus of nonmeasurable functions and it will be used often:

Proposition 3.7.3 [ One-sided Fubini-Tonelli theorem]
Let (X × Y ,A

⊗
B,P × Q) be a product probability space. Let

f : X × Y 7→ [0,∞) , and let f ∗ be its measurable cover w.r.t.P × Q. Let
E ∗P and E ∗Q denote, respectively, the outer expectations w.r.t. P and Q.
Then

E ∗PE
∗
Q f ≤ E (f ∗), E ∗QE

∗
P f ≤ E (f ∗).

If, moreover, Q is discrete and B is the collection of all the subsets of Y ,
then

E ∗PEQf ≤ E (f ∗) = EQE
∗
P f .



3.7.1 Some Measurability

We introduce a concept that will be useful when extending to the
nonmeasurable setting Skorokhod’s theorem about a.s. convergent
representations of sequences of random variables that converge in
distribution.

Let φ : (X̃, Ã) 7→ (X,A) be measurable, let P̃ be a probability measure on
Ã and let P̃ ◦ φ−1 be the probability law of φ. Then, if f : X 7→ R is
arbitrary, we have f ∗ ◦ φ ≥ f ◦ φ, where f ∗ is the P̃ ◦ φ−1-measurable
cover of f and hence f ∗ ◦ φ is P̃-measurable and therefore
f ∗ ◦ φ ≥ (f ◦ φ)∗ P̃ a.s.



3.7.1 Some Measurability

Definition 3.7.5 [ P̃-perfect ] A measurable map φ : X̃ 7→ X is P̃-perfect
if f ∗ ◦ φ = (f ◦ φ)∗ P̃ a.s. for every bounded function f : X 7→ R , where
(f ◦ φ)∗ is the P̃-measurable cover of f ◦ φ and f ∗ is the
P ◦ φ−1-measurable cover of f .

Then, if φ is perfect and f is bounded,

E ∗
P̃

(f ◦ φ) =

∫
(f ◦ φ)∗dP̃ =

∫
f ∗ ◦ φdP̃ =

∫
f ∗ d(P̃ ◦ φ−1)`1)

=

∫ ∗
fd(P̃ ◦ φ−1) = E ∗

P̃◦φ−1f , (3.243)

or, for indicators, P̃∗{φ ∈ A} = (P̃ ◦ φ−1)∗(A) for any A ⊂ X . It is this
property that will make perfectness useful.
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3.7.2 Uniform Laws of Large Numbers (G-C Theorems)

• Given Xi , i ∈ N, on (Ω,Σ,Pr) := (S ,S,P)N, the product of
countably many copies of (S ,S,P) and a collection of real-valued
measurable functions F on S .

• We are now interested in obtaining conditions on F and P ensuring
that LLN holds uniformly in f ∈ F , that is, so that

lim
n→∞

||Pn − P||∗F = 0 a.s.,

where Pn =
∑n

i=1 δXi
/n (1 ≤ i ≤ n, n ∈ N).

• Let F be the P-measurable cover of the function x 7→ supf ∈F |f (x)|.
We call this function the measurable cover of F .



3.7.2 Uniform Laws of Large Numbers (G-C Theorems)

Proposition 3.7.8 If PF <∞ then the sequence {||Pn − P||∗F}∞n=1

converges a.s. and in L1 to a finite limit.

The limit in proposition3.7.8 may not be zero: if, for example, P gives
mass zero to all finite sets of R and F is the collection of indicators of all
finite sets in R, then ||Pn −P||F = ||(1/n)

∑n
i=n δXi

({X1, · · · ,Xn})||F = 1



3.7.2 Uniform Laws of Large Numbers (G-C Theorems)

Corollary 3.7.9 If PF <∞ and {||Pn − P||∗F} converges in probability to
zero, then it converges a.s. to zero.

In other words, under integrability of the measurable cover of the class F ,
the weak law of large numbers uniform in f ∈ F implies the uniform
strong law.



3.7.2 Uniform Laws of Large Numbers (G-C Theorems)

The following definition is given by analogy with the classical
Glivenko-Cantelli theorem for the empirical distribution function in R,
which is just the law of large numbers for the empirical process over
F = {I(−∞,x] : x ∈ R}.

Definition 3.7.10 [ P-Glivenko-Cantelli class ] A class of functions F is a
P-Glivenko-Cantelli class if ||Pn − P||∗F → 0 a.s., where Pn is the empirical
process based on the coordinate projections Xi , i = 1, · · · , n, n ∈ N, of the
product probability space (S ,S,P)N.



3.7.2 Uniform Laws of Large Numbers (G-C Theorems)

Definition 3.7.11 A class of functions F is P-measurable, or P-empirically
measurable, or just measurable, if for each {ai , b} ⊂ R and n ∈ N , the
quantity ||

∑n
i=1 ai f (Xi ) + bP||F is measurable for the completion of Pn.

For example, if F is countable, then it is P-measurable for every P.
If F0 ⊂ F is P-measurable and for each{ai , b} ⊂ R and n ∈ N,

Pr∗{||
n∑

i=1

ai f (Xi ) + bPf ||F 6= ||
n∑

i=1

ai f (Xi ) + bPf ||F0} = 0,

then F is P-measurable;



3.7.2 Uniform Laws of Large Numbers (G-C Theorems)

In the measurable case, the Glivenko-Cantelli property for F can be
characterised by a condition on the metric entropies of F w.r.t the Lp(Pn)
pseudo-metrics, for any 0 < p ≤ ∞. These metric entropies are random,
so the result does not constitute a complete solution to the problem, but
it does simplify it.

• Definition of the empirical Lp pseudo-distances :
en,p(f , g) = ||f − g ||Lp(Pn)

- p =∞, en,∞(f , g) = max1≤i≤n|f (Xi )− g(Xi )|
- 0 < p <∞, en,p(f , g) = [

∑n
i=1 |f (Xi )− g(Xi )|p]1/(p∧1) .

• Covering numbers and packing numbers of (T , d)
: N(T , d , ε) , D(T , d , ε)

Given a class of functions F and a positive number M, we set

FM = {fIF≤M : f ∈ F},

where F is the P-measurable cover of F (determined only P a.s.).



3.7.2 Uniform Laws of Large Numbers (G-C Theorems)

Theorem 3.7.14 Let F be class of functions with an everywhere finite
measurable cover F and such that FM is P-measurable for all M ≤ ∞.
Assume also that F is L1(P) -bounded, that is, supf ∈FP|f | <∞ . Then
the following are equivalent:
(a) F is a P-Glivenko-Cantelli class of functions.

(b) PF <∞ and ||Pn − P||F
prob.−−−−→ 0

(c) PF <∞, and for all M <∞, ε > 0 and p ∈ (0,∞],

(logN∗(FM , en,p, ε))/n
prob.−−−−→ 0 (in Lr for any 0 < r <∞).

(d) PF <∞, and for all M <∞ and ε > 0 and for some p ∈ (0,∞],

(logN∗(FM , en,p, ε))/n
prob.−−−−→ 0 (in Lr for any 0 < r <∞).

(e) PF <∞, and for all M <∞ and ε > 0 ,

E (1 ∧ (1/
√
n)

∫ 2M

0

√
logN∗(FM , en,2, τ)dτ)→ 0



3.7.2 Uniform Laws of Large Numbers (G-C Theorems)

Corollary 3.7.15 Let F be an L1(P)-bounded, P-measurable class of
functions, and let F be its P-measurable cover. Then F is
P-Glivenko-Cantelli if and only if
(a) PF <∞ , and

(b) (1/n)logN∗(F , en,2, ε)
prob.−−−→ 0 (or in L1/2 ) .

For classes of sets C, recall the definition of ∆C(A) for finite sets A in
Section 3.6.1, ∆C(A) = Card{A ∩ C : C ∈ C} , and note that for
A(ω) = {X1(ω), · · · ,Xn(ω)}, if C ∩ {X1, · · · ,Xn} = D ∩ {X1, · · · ,Xn},
then en,p(C ,D) = 0 for all 0 < p ≤ ∞ and that en,p(C ,D) ≥ n−1/(p∨1)

otherwise. Hence, N(C , en,p, ε) ≤ ∆C(X1, · · · ,Xn) for all ε > 0 , with
equality for 0 < ε ≤ n−1/(p∨1).



3.7.2 Uniform Laws of Large Numbers (G-C Theorems)

This observation and Theorem 3.7.14 for p =∞ give the following result
for classes of sets:

Corollary 3.7.16 Let C be an L1(P)-bounded, P-measurable class of sets.
Then ||Pn − P||∗C → 0 a.s. if and only if

lim
n→∞

1

n
log(∆C(X1, · · · ,Xn))∗ = 0 in prob.( or in Lr for any r <∞)



3.7.2 Uniform Laws of Large Numbers (G-C Theorems)

Combining Corollary3.7.15 with Theorem3.6.9 about the empirical metric
entropy properties of VC type classes of functions, we obtain the following
uniform law of large numbers.

Corollary 3.7.17 Let P be any probability measure on (S ,S), and let F be
a P-measurable class of functions whose measurable cover F is
P-integrable. Assume that
(a) F is VC subgraph or, more generally, of VC type, or
(b) F is VC hull.

Then F is P-Glivenko-Cantelli.



3.7.2 Uniform Laws of Large Numbers (G-C Theorems)

Remark 3.7.18 Since, as mentioned in the preceding proof,
||Pn − P||F = ||Pn − P||c̄oF , it follows that the Glivenko-Cantelli property
is preserved by taking pointwise closures of convex hulls; that is, F is
P-Glivenko-Cantelli if and only if c̄oF is.



3.7.2 Uniform Laws of Large Numbers (G-C Theorems)

For larger classes, one may use the random entropies in Corollary 3.7.15
and Theorem 3.7.14;
The following criterion for the Glivenko-Cantelli property based on L1(P)
bracketing is more user friendly when it applies:

Theorem 3.7.20 If F ⊂ L1(S ,S,P) and N[](F , L1(P), ε) <∞ for all
ε > 0 , then ||Pn − P||∗F → 0a.s.



3.7.2 Uniform Laws of Large Numbers (G-C Theorems)

It also implies LLN in separable Banach spaces. For a random variable X
in a Banach space B, the expectation EX is defined in the Bochner sense.

Corollary 3.7.21 (Mourier law of large numbers) Let B be a separable
Banach space, and let X ,Xi be i.i.d. B-valued random vectors such that
E ||X || <∞ . Then

1

n

n∑
i=1

Xi → EX a.s.
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